

Airship 2.0 White Paper

Life Cycle Management for Complex Cloud Infrastructure

April 2020

Authors

Alan Meadows

Rodolfo Pacheco

Ryan van Wyk

Introduction

The overall Airship goal is to enable telecommunications operators to predictably deliver

raw infrastructure as a resilient cloud, and to easily manage the life cycle of the resulting

platform, including real-time upgrades with no downtime.

This means caring for what many other solutions assume you already bring to the table

before you can use them. Many of these private cloud solutions assume you are

already bringing either third-party cloud infrastructure, or have done the hard work

yourself of provisioning raw bare metal infrastructure including installing operating

systems, configuring RAID, and setting up the network.

The challenge of doing this predictably, declaratively, and with enough flexibility for

different use cases across a variety of infrastructure back-ends is substantial. This is

why most tools assume this work is already done before they can be used.

Airship 2.0, in contrast, provides a complete solution in advance, providing end-to-end

delivery within the following architecture:

Figure 1 – Airship 2.0 Architecture

Airship 2.0 and CNCF

A challenge Airship 1.0 faced was keeping up with the frenetic pace of provisioning

innovation and newly emerging lifecycle patterns occurring within CNCF and other large

communities. CNCF is the Cloud Native Computing Foundation, which seeks to “build

sustainable ecosystems and foster communities to support the growth and health of

cloud native open source software”.

The number of infrastructure options grows daily, and the requirements on what users

want to declaratively define and lifecycle for bare metal - from RAID to firmware –is

constantly expanding. The only constant seems to be change itself.

Instead of attempting to customize Airship to meet every emerging solution set, the

objective of Airship 2.0 is to provide a declarative interface to assemble and

orchestrate best-of-breed CNCF building blocks. The scope of this vision

encompasses provisioning and complete life cycle management of the full-stack cloud

infrastructure using Kubernetes containers.

In this model, Airship is an invested consumer and integrator of

these CNCF building blocks, not the author.

Successful CNCF projects are generally well-scoped in their

problem-domain. They support a subset of the above solution

and we view that as a requirement for each of these projects to

thrive.

Airship 2.0 takes each of these CNCF projects and provides the glue that not only

serves to provide a functional end-to-end integration, but a smooth operator

experience tying all these projects together. Most importantly, it does this without

introducing customizations to any of these components such as Kubernetes itself or

other CNCF projects. This ensures that Airship users are not running forked versions in

order to achieve integration.

Airship is opinionated about deployments only to the point of enabling the above goals,

and seeks to step out of the way as much as possible to let end-user declarations drive

configurations. This enables Airship 2.0 to maintain the rapid pace of a constantly

evolving CNCF landscape.

Figure 2.0 Airship with CNCF model

In order to achieve this degree of adaptability, Airship leverages a command line utility

(airshipctl) to drive the deployment and life cycle management of Kubernetes clouds.

This utility articulates lifecycle management as a list of phases. For each of these

phases, a YAML document set that is rendered with Kustomize, which expertly

integrates and transparently utilizes the appropriate set of CNCF projects to deliver that

particular phase.

https://github.com/airshipit/airshipctl

For example, in order to deliver a control plane phase that builds a Kubernetes control

plane across several machines, the phase integrates the Cluster-API components to

handle infrastructure provisioning, and kubeadm to provision and configure Kubernetes

on each node. With this approach, the limits of what you can achieve in terms of

customization and advanced configuration is bound by the scope of these particular

CNCF projects rather than Airship.

Some of these phases are built directly into airshipctl but users can also define their

own phases and deliver them as part of an Airship document bundle and use airshipctl

to render and deliver them. Airship provides value here as well by defining a structure

to the YAML that supports this declarative and flexible interface.

Effectively, a structure for composing a library of YAML functions and compositions

which make use of reusable functions to compose higher level services. Users can pull

from this library of functions to build their own composites to build their own phases.

Under the Hood

Airship interfaces directly with Kubernetes to drive both initial deployments and

upgrades.

The heart of that mechanism is the airshipctl utility which provides a one-stop command

line interface to automate cloud provisioning. Because this utility works directly against

Kubernetes endpoints it can ensure even the lowest set of dependencies for Airship

such as the Cluster-API software components, Helm, Argo, and their related CRDs are

instantiated within the site prior to delivering subsequent site-specific artifacts.

The airshipctl utility is effectively a “go module” that produces a single binary: airshipctl.

This utility operates on a Kubernetes cluster security context defined within its

configuration file—the same security context that you would use with the standard

kubectl utility. In other words, a user with a basic understanding of how to use kubectl

should have little to no difficulty learning to use airshipctl. The airshipctl utility is the

main entry point for bootstrapping a cluster, collecting documents from source control,

rendering and applying documents to clusters, and managing workflows.

The utility was built with flexibility and customization in mind, making it easy for

organizations or even products built around Airship to add their own plugins and create

their own self-contained binary builds with their plugins automatically enabled without

forking the project.

https://github.com/airshipit/airshipctl

Figure 3 - AIRSHIPCTL

There are several components or resources that enable airshipctl to perform lifecycle

management.

They are:

● The airshipctl binary itself. This is what drives lifecycle requests from outside

the target cluster, from initial provisioning to subsequent lifecycle updates.

● The airshipctl configuration file. This configuration file contains a cluster-

context for each environment you will manage along with their document source

repository URLs in source control that it should pull down for each site. It also

includes any bare metal site-specific bootstrap configuration, like where the

generated ISO can be remotely pulled from when using bare metal infrastructure.

The cluster-contexts allow airshipctl to authenticate and make Kubernetes API

requests against the environments defined. You can easily switch between

several environments defined in a single configuration file by setting your

airshipctl current context.

● The source repositories containing YAML libraries. This is where site

specific resources as well as resources shared across Airship environments is

declared as YAML and stored. Source repositories are composed of one or

more source control repository locations. The repository URLs that are specified

in the airshipctl configuration are cloned or updated automatically as part of

airshipctl document pull. There is a specific directory structure to these

repositories that enable airshipctl to expose deployment and lifecycle updates of

your site as distinct phases you can launch individually or as part of a holistic

pipeline. Some of these phases are builtin to airshipctl, and source repositories

can also bring their own phase definitions.

● Helm Artifacts. While phases can deploy any object that can be “kubectl

applied” to a cluster, Airship encourages managing the life-cycle of most

resources outside the core Kubernetes control plane as helm charts. This means

that helm is not a requirement but is highly encouraged. By including a helm-

operator or Argo workflow approach that can understand how to process Custom

Resources specifying helm chart locations, their values, tests to run, and so on

that get applied to the cluster during any phase, you can simplify the contents of

the YAML source repositories and further shift the software deployment and

automation to the application owners themselves.

Phases, Functions, Composites, and YAML Libraries

Airship expresses lifecycle management as a series of phases that simplify how a

Kubernetes cluster is built and subsequently managed.

The lesson learned with Airship 1.0 was that expressing a site as the complete series of

document declarations for that site was difficult to manage and mentally digest. Phases

helps people deal with a much smaller document set that is much more granularly

scoped to a particular objective.

The concept of a phase is fundamental to the extensibility and flexibility of Airship. All of

the phases of Airship can be used, or a subset. A phase is a simple concept in Airship:

render a collection of YAML for that phase, apply it to a target Kubernetes cluster, and

wait until all resources that were a part of that phase are successfully up and running.

Figure 4 – An Airship Phase

This concept can best be imagined as breaking the resources you need to deliver to

Kubernetes into distinct and isolatable units; these units can be a mix of custom

resources for that phase and re-usable resources across phases.

Under the hood, Airship leverages Kustomize to render the resources for a given phase.

This provides every phase with the power of variable replacement, layering,

substitution, resource manipulation, and validation that is built into the CNCF Kustomize

project.

From a YAML engineering perspective, this allows Airship users to bring their

Kustomization knowledge to the table when working with Airship, and it also means that

you can work with and test a given phase in isolation--even without Airship using just

kustomize--without having to render and examine every resource that airshipctl might

apply to an environment across all phases.

This makes it much easier to understand where a particular phase is getting its input

from especially when dealing with replacements and substitution and what the

generated resources look like when being rendered by Kustomize.

A phase is always tied to a specific Kustomize entry point. This is effectively a specific

kustomization.yaml file in a particular directory.

An Airship Phase Map is declared in your YAML library that allows YAML Engineers to

expose the available phases they want to publish along with human readable

descriptions of what those phases do and provides the link between a phase name and

a particular directory containing a kustomization.yaml. This allows airshipctl to show

end-users what phases are available and allow them to run the phase a deployment

engineer or CI/CD pipeline wants to target.

As previously described, phases are essentially a YAML collection which is

rendered by Kustomize.

The structure that Airship provides is that the kustomization.yaml for a phase generally

points to one or more composites, and any phase specific customizations. Composites

themselves are pointers to various function definitions, again with any composite

specific customizations.

The point of composites is to be able to define a function once and only once. For

instance, it may define how to deploy a workload within Kubernetes, and then re-use

that definition without duplicating the YAML in higher level composites that define a

business level need by simply re-using these functions.

Another example: the deployment YAML can be defined once for a critical operator as a

function, but define several different ways of instantiating that operator as composites.

Individual sites can also define as much or as little site-specific phase YAML as they

want.

Organizations that deploy extremely homogeneous environments will find that most of

their definitions beyond site specific resources like Bare metalHosts and CIDR

definitions can live outside an individual environment’s entrypoint and be re-used across

all environments but the flexibility exists for an individual environment to be as custom

as needed including introducing completely arbitrary phases for that one environment.

In order to provide a curated lifecycle experience, airshipctl provides several builtin

phases that are available out of the box. These assist users with driving the Cluster-API

provisioning process, bootstrapping a control plane, deploying worker nodes, and

delivering core infrastructure software such as logging, monitoring, and alerting. Users

can choose to leverage these, override them, extend them, or even ignore them. Users

can also pull from an upstream YAML library of additional composites and functions the

Airship community has curated upstream to build their own phases that more closely

align with what they are trying to do with their Kubernetes clusters.

Within the Airship curated phases that are built-in, Airship promotes the operator and

CRD pattern which means that all state is stored with Kubernetes and following the

progress of operations--from the infrastructure provisioning process to Helm software

installation--is as simple as querying the status of objects in Kubernetes with kubectl.

This pattern ensures that Kubernetes maintains an easy to query state about the

progress of any given deployment effort with a low barrier to entry for users and

maintains complete ownership of reconciling changes instead of any outside

automation. This also ensures that extensions, custom tooling, and other systems that

Airship users build on top that coalesce, monitor, and otherwise depend on the status of

Kubernetes objects whether for human or CI/CD tooling consumption can remain

completely Airship agnostic. They are simply integrating directly with the CNCF projects

that Airship employs under the hood.

Airship and Bare Metal

Airshipctl leverages the Cluster-API to support bootstrapping and life cycle management

of Kubernetes clusters. This means that any infrastructure back-end supported by the

Cluster-API will be supported by Airship.

While there is no assumption of bare metal infrastructure within Airship 2.0, there are a

number of pain points when using the Cluster-API to provision bare metal infrastructure

that airshipctl addresses.

The airshipctl utility provides a specific set of functionality that helps with the additional

burden of deploying and managing Kubernetes clouds directly on bare metal and

standing up new bare metal environments using the Cluster-API.

When performing a Greenfield bare metal site deployment, airshipctl delivers an

ephemeral Kubernetes cluster within the environment so that there is a foothold within

the physical bare metal environment allowing standard services such as DHCP, PXE,

and TFTP to function normally but still be delivered as software deployed via

Kubernetes to establish a target control plane. This allows the standard Cluster-API

process of provisioning to be performed without forcing users to build their own

ephemeral cluster or build out a centralized management cluster that can remotely

provision all environments.

The logic behind this approach is to effectively be able to provide a bare metal cluster

the same kind of ephemeral management cluster as you could easily fabricate locally

with minikube or kubernetes-in-docker (kind) when working with a third-party cloud but

can be difficult to create for bare metal environments.

This functionality is enabled by first by exposing an airshipctl bare metal

ephemeral isogen command. This fabricates an ISO that is tailor made for the target

environment using the declared document set for that site. It functions by calling a user-

defined container that adheres to a specific contract of inputs and outputs. Namely, it

must accept certain environment variables that instruct the ephemeral host on how to

configure its networking and first-boot user-data commands to construct the ephemeral

Kubernetes cluster and must output specific artifacts such as the ISO itself. The

container itself is responsible for manufacturing the bootable ISO and ensuring the

cloud-init user-data provided is launched at boot within the ISO without any interactive

input by the user.

This containerized approach serves two purposes:

First, building bootable ISOs requires a number of target operating system

specific utilities (e.g. debootstrap for Debian) to not only manufacture an ISO but

support injecting things like cloud-init into the ISO artifact so that it can come up

running Kubernetes without any interaction. It would be restricting to insist that

the underlying machine running airshipctl have all of these utilities installed

directly.

Second, building this directly into airshipctl means that supporting alternative

approaches to ISO building and many operating systems would become

challenging. Instead, Airship provides a reference Debian based container

upstream that can be used out of the box, but the approach allows users of any

operating system or wishing to adopt an ISO building approach that makes sense

for their particular organization to use this reference to build their own container

that can easily be called instead.

As a reminder, several things are input into the ISO generating container via

environment variables when airshipctl launches the container. The two primary

elements are (1) the network configuration for the ephemeral bare metal host, and (2)

the cloud-init user-data that will launch an in-memory Kubernetes instance on the host.

Airship locates these two pieces of data using special labels within the Airship

document bundle. It extracts the networking configuration for the ephemeral host from

the Bare metalHost object that is labeled as the ephemeral host. This enables the user

to simply elect to use a host within your declared set of bare metal target infrastructure,

without providing a separate ephemeral host or network configuration.

Airshipctl will extract the ephemeral hosts target network configuration that would be

used when that host is properly deployed later in the process, and use that same

configuration within the ISO, reducing the need for a separate configuration to maintain

and allowing users to easily change which host is used as the ephemeral host by

moving a label. Airshipctl will also extract the ephemeral cloud-init user-data from a

Secret object within your document bundle that has an ephemeral user-data label.

Once the ISO is generated, airshipctl can again be invoked via airshipctl bare

metal ephemeral remotedirect to force the ephemeral host to remotely boot

from the ISO generated in the previous step which will boot into an in-memory single-

node Kubernetes cluster, Airshipctl uses this to instantiate the dependencies necessary

to drive subsequent Cluster-API based provisioning within that environment and build

out a permanent target cluster.

When at least one control plane node is provisioned within the target cluster, airshipctl

will pivot the provisioning process into the target cluster, and continue to deploy bare

metal hosts from there, abandoning the ephemeral host and eventually absorb the

ephemeral node into the target cluster when it is targeted for provisioning.

This ensures every host, even the first host, are provisioned exactly the same way at

the end of the process.

Comparing Airship to the Industry Alternatives

When it comes to Kubernetes lifecycle management, there are only a handful of realistic

off-the-shelf options to build and manage Kubernetes environments.

These include OpenShift, Rancher, and Pivotal PKS. All of these are mature and widely

used products.

There are several reasons we believe Airship 2.0 provides a better path, especially for

Telco providers:

● Telco providers today are heavily invested in VNFs and OpenStack today.

Airship excels at delivering Helm based software and so a pairing of Airship, and

the upstream OpenStack-Helm project to deploy OpenStack via Helm on top of

Kubernetes allows Telco’s a way to deliver a cloud-native solution that aligns with

where they are today, but enables their path to the future when workloads are

entirely container-based. We provide many of the same core features as the

platforms above, but in a way that helps enable Telco CNF transformation. This

makes it easy for them to build hybrid VNF and CNF use cases that run on bare

metal and public clouds right now.

● None of the solutions above are purpose-built for Telco needs. While Airship

can be used for any type of workload on top of Kubernetes and is not built

specifically for Telco’s, we have a set of curated functions and composite YAML

definitions that can be leveraged to help enable Telco-grade security, networking,

and topology configurations to support things such as CPU and NUMA Pinning,

Multus for multiple interfaces, SR-IOV, and so on which is simply not an offering

from most of the products above.

● Airship is highly decomposable. As discussed above, Airship delivers

infrastructure provisioning and lifecycle management as a series of discrete

phases. End-users can choose to use as much or as little of Airship as they

want. For instance, you could use Airship to simply provision your infrastructure

and Kubernetes, but switch to your own automation for anything beyond a core

Kubernetes control plane.

● Operating System Agnostic. Airship is operating system agnostic for any

infrastructure backend that is supported by the Cluster-API as long as that

operating system can run cloud-init. Most vendor products have an extremely

tight coupling to their own operating system without any real option to support

alternatives.

● Truly No Lock-In. Probably one of the most important features of Airship is that

there is truly no lock-in. As detailed in this paper, Airship orchestrates best-of-

breed CNCF projects to enable the provisioning and life-cycle of Kubernetes

clusters. If you want to stop using Airship to manage your environments and

manage the underlying CNCF components using your own tooling you can do so

at any time. There is no customization or Airship forked versions, so you can

switch to managing them yourself easily.

● Open Approach to Vendor Support. Airship is not a vendor product--it is built

by operators for operators--so a variety of existing and established support

vendors you are already working with can easily step-in to a production support

role for your organization.

In summary …

Summary

Airship solves the operational challenge of integrating and managing the lifecycle of the

various CNCF projects that enable end-to-end provisioning and maintenance of clouds.

Airship is effectively a proven approach and leveraged at scale in production today.

The fact that end-users could technically stitch together these various CNCF

components using their own in-house automation is evidence of the sustainability of this

approach.

There is no intention for Airship to step outside the role of simply being the glue that

helps streamline the integration of various CNCF projects and the resulting operational

experience. When the Airship community identifies enhancements or issues with the

upstream projects it works with, we seek to resolve those upstream and consume then

consume the new functionality within Airship rather than own those solutions within the

Airship project.

We believe this is what a true Open Source ecosystem looks like and how Airship can

thrive in an ever-evolving landscape.

References

Airship 2.0 Intro Video: https://www.youtube.com/watch?v=13v3z4EIK9I

Airshipctl: https://github.com/airshipit/airshipctl

Airship UI: https://github.com/airshipit/airshipui

Airship 2.0 Technical Blog Series:

• https://www.airshipit.org/blog/airship-blog-series-1-evolution-towards-2.0/

• https://www.airshipit.org/blog/airship-blog-series-2-an-educated-evolution/

• https://www.airshipit.org/blog/airship-blog-series-3-airship-2.0-architecture-high-

level/

• https://www.airshipit.org/blog/airship-blog-series-4-shipyard-an-evolution-of-the-

front-door/

• https://www.airshipit.org/blog/airship-blog-series-5-drydock-and-its-relationship-

to-cluster-api/

• https://www.airshipit.org/blog/airship-blog-series-6-armada-growing-pains/

Airship YouTube Channel (Demos etc.):

https://www.youtube.com/playlist?list=PLKqaoAnDyfgp8YjZbzjVrmZBJR9thV27y

Airship 1.0 White Paper: PDF Document

https://www.youtube.com/watch?v=13v3z4EIK9I
https://github.com/airshipit/airshipctl
https://github.com/airshipit/airshipui
https://www.airshipit.org/blog/airship-blog-series-1-evolution-towards-2.0/
https://www.airshipit.org/blog/airship-blog-series-2-an-educated-evolution/
https://www.airshipit.org/blog/airship-blog-series-3-airship-2.0-architecture-high-level/
https://www.airshipit.org/blog/airship-blog-series-3-airship-2.0-architecture-high-level/
https://www.airshipit.org/blog/airship-blog-series-4-shipyard-an-evolution-of-the-front-door/
https://www.airshipit.org/blog/airship-blog-series-4-shipyard-an-evolution-of-the-front-door/
https://www.airshipit.org/blog/airship-blog-series-5-drydock-and-its-relationship-to-cluster-api/
https://www.airshipit.org/blog/airship-blog-series-5-drydock-and-its-relationship-to-cluster-api/
https://www.airshipit.org/blog/airship-blog-series-6-armada-growing-pains/
https://www.youtube.com/playlist?list=PLKqaoAnDyfgp8YjZbzjVrmZBJR9thV27y
https://about.att.com/ecms/dam/inside_connections_blogdocs/Whitepaper%20-%20Airship%20a%20New%20Open%20Infrastructure%20Project%20for%20OpenStack%20v1.0.pdf

	Airship 2.0 White Paper
	Life Cycle Management for Complex Cloud Infrastructure
	Authors
	Introduction
	Airship 2.0 and CNCF
	Under the Hood
	Phases, Functions, Composites, and YAML Libraries
	Airship and Bare Metal
	Comparing Airship to the Industry Alternatives
	Summary
	References

